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Absrraet. We study the staring capacity of a neural network with a synapsis organized 
in WO clusters, by analysing Ihe maximal volume in interaction space. The cluster or- 
ganization is introduced through a modified spherical condition on the interactions and 
also through the requirement of storing together a family of patterns formed by an 'an- 
cestor' and one 'descendant' that differ on the relative sign of the cluster configurations. 
The critical capacity d is compared with Gardner's result for a uniform system, GIG, 

with the result that when good retrieval of only one member of the 'family' is required 
the ratio c r c / o i G  coincides with the value obtained previously by the signal-to-noise 
method. When we analyse the volume corresponding to joint retrieval of 'ancestor' and 
'descendant' we obtain w ' / a G  = regardless of the C I U S I C ~  modulation. 

1. The model and results 

In a previous publication [l] we presented a model for neural networks where the 
N sites of the network are organized in L! clusters with hierarchical interactions. The 
energy function is given by 

where the i, j indicate network sites and a ,  b = 1 , .  . . , e  are cluster indices. The 
synaptic junctions were defined as 

J?h E J  = A a b ( C ) J V  i E a  j ~ b  (2) 
in terms of Hebb's learning rule 

and the elements Aab(C) of an C x C matrix A that has ultrametric structure, given 
by the recursion relation 

- 
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where U( d) is a &dimensional matrix with all elements equal to unity and .4( 1) = 1.  
Hopfiems model is recovered for t = O,Aab(C) E 1. while for large valu&of E the 
interactions are concentrated within one cluster 131. As a consequence of the spatial 
modulation we found that for every stored pattern { C f )  the nehvork also retrieves a 
family [2] of ‘descendants‘ 
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7p U:[: i E a  (5) 

where the U,‘ = k1 are the components of an eigenvector of matrix A with eigenvalue 
A,, y = 1 , .  . . , C .  The largest eigenvalue A,  corresponds to the ‘ancestor’ or stored 
pattern, with U: E 1. Hopfield’s model is recovered from (1) when A,, = constant 
and gives A, > 0, A, = A, = . . . = 0. 

The saturation properties of the network for an extensive number p = n N  of 
stored patterns were analysed in 131, with the following results. 

(i) The signal-to-noise analysis gives for the ratio of critical capacities 

where ,p mrrespnd_s to Hapfie!& mode! and_ is the critical capacity for the 
storage of the 7-descendant in (5). 

(ii) A mean-field theory calculation [3] gives the following hound: 

where a; is the critical capacity for the stored pattern and ak the corresponding 
quantity in Hopfield’s model. 

In this paper we present a complementary analysis of the problem by using Gard- 
ner’s method 141. We ask the question of what is the volume in interaction space 
such that the patterns in (5 )  are attractors of the dynamical equations, equivalent to 
satisfying the relations 

,y/,p, > ny (7) 

where the local field is given by 

and the parameter K, 2 0 is related to the sue of the basin of attraction for each 
descendant. The interactions are in general non-symmetric, J i j  + J i i ,  and the 
spatial modulation is introduced through a modified spherical condition, similar to 
that satisfied by the synapsis in (2): 



Interactions in neural networks 5913 

The study of the problem for arbitrary values of C is very complex, hence we 
restrict this analysis to two clusters, C = 2. The matrix A in (4) becomes 2 x 2 and 
we indicate by A ,  ( A , )  the diagonal (off-diagonal) elements, A ,  > A,. The patterns 
together with their only descendant in (5 )  are 

Following closely Gardner's work [4] we introduce the volume in interaction space 

where we have exploited the independence of Jij # J j i  and without loss of generality 
we m u m e  that i < N / 2  belongs to cluster 1, since for i > N / 2  we will obtain 
the same equations by symmetry. We do  not write the normalization constant that 
is irrelevant in the following discussion. The quantity we are interested in is the 
configurational average of In R over the random patterns, that we calculate by using 
the replica method. Then 

(12) 
R, - 1 (Inn) = l im  ~ = G N  

n-0 n 

where calling p = 1 , .  . . , n the replica index, we have 

We indicate by hr: in (13) the local field in (8) in t e rm of J f . ,  and qr7  was 
defined in (10). The method of calculation was described by Gardner [4] and we 
refer the reader to this paper for details. We introduce the order parameters 

2 qhpp' = - J P .  JP,'  # 
* J  13 

j € b  

when i < N / 2  belongs to cluster 1 and b = 1 or 2, and by using the integral 
representation for the step function we obtain in (13) 
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where 
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The next step is to use the integral representation of the &functions in (15). 
and to reach an integral expression for $2, that can be solved by the saddle-point 
method 141. Assuming from the start a replica symmetric solution 

q f p  = q b  P f  P' (17) 

the Gaussian integrals over JP,  and z f  are easily performed with the result at the 
saddle point, when n - 0: 

where we used the notation 

and 

with 

eb = A i  - qb.  (21) 

After solving the saddle-point equations for E, and Fb we can write in (12) from 
(18): 
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1.1. Lhlil K 2  + --oO 

Before proceeding with the general saddle-point equations for qb, we discuss the 
simpler case of storing only one pattern per family in (11). 

When IC, + -CO we are left with the volume of space modulated interactions 
that satisfy the block equations (9), but that allow only rfl in (10) to be an attractor 
of the dynamics. In this limit we get from (20) 

where we introduced the function 
r m  

H ( t ) =  J’, D r .  

From (22) and (23) the saddle-point equations for q,  and q, are 

Equation (25) indicates that for a = 0, qb = 0 and the J i j  that solve (7) are 
uncorrelated, while for increasing values of a, qb also increases. At the critical value 
cyc the volume reduces to a point, there is only one choice of Jij and, from (14) and 
the spherical condition in (9). qb reaches its maximum value A i .  From (21) and the 
first equality in (25) we obtain that for a + a,, qb = A i  - Ab6, 6 - 0. The integral 
in (25) also becomes singular and we obtain by calculating the asymptotic behaviour 

with K’ = ~ , f i / ( A :  + A ; ) $ .  In terms of the eigenvalues A, = A ,  + A, and 
A, = A ,  - A, of the matrix A - in (14) for e = 2,  we can write (27) as 

where we indicate by a&(.‘) Gardner’s expression [4] for the storing capacity of 
uncorrelated patterns with bassin of attraction K‘. When lil = 0 we recover from 
(28) the same value for the ratio among critical storing capacities, af(O)/a&(O), that 
has been obtained from the signai-to-noise method i3j and is given in (6j. 

The result in (28) was obtained by letting K ,  - -U= in (11) and expresses the 
critical capacity for storing only the ‘ancestor’ in the network, corresponding to the 

we still obtain the same result in (28) and not the equivalent to (6) with A, = A,. 
This is because the local field and the spherical condition in (8) and (9) are invariant 
under the joint transformation (: + -(?, I J . .  ‘I - -Jij, hence the system cannot 
distinguish between ‘ancestor’ and ‘descendant’. For A, = A, we recover the result 
for a non-modulated network, a, = 2, while for A, = 0 we are left with only half 
of the sites to store p patterns; then the storing capacity is reduced by a factor i, 

eigenvalue A, = A, in (6 ) .  However, by taking the opposite limit K ,  - -CO 3 Kz > 0, 
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1.2. General case 
We obtain from (20) 
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with 

The calculations are now far more involved than in the previous case. We obtain for 
the saddle-point equations 

where 

To obtain the critical storage capacity we take simultaneously the limits E , ,  E, i 0 
while keeping constant the ratio € , / e2  = T ,  that is to be determined together with 
a' from the solution of (31) and (32). To calculate the singular behaviour of the 
integrals in these equations we look for the values of zl, z, that make W in (29) 
vanishingly small and we frequently use, for an arbitrary function F( y )  

L m F ( y ) d y =  @(-z)/ F ( Y ) ~ Y - @ ( - ~ )  F ( - y ) d y + @ ( r ) L  F ( Y ) ~ Y  

(34) 

together with the asymptotic expansion of the last two integrals for large values of lzl. 
The calculations are straigthforward but tediously long and we just quote the final 

results for the maximum storing capacity at nl  = n2 = 0. We obtain from (31) and 

m m 

-m L 

(32) 
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where A = A,/A, .  For A, = 0 we recover exactly ac = 1, which coincides with 
the result obtained in (28). This is the correct limit because when A, = 0 and 
K, = K , ,  the 6’-functions in (11) have the same arguments and (11) coincides with 
(13). The integrals in (35) and (36) are standard [5] and the equations can be solved 
numerically for a , ( A )  and e,/€, = .(A), with the result shown in figure 1. It is 
surprising that when we impose the condition of storing the two related patterns in 
(9, the storing capacity is not sensitive to modulation and practically sticks at its 
value for A ,  = 0. 

2. Summary and conclusions 

When Hebh’s learning rule is replaced in Hopfield’s model by the space-modulated 
learning algorithm in (2). we find [l-21 that the system retrieves the family of ‘de- 
scendants’ in (5) together with the original pattern or ‘ancestor’. The network accepts 
the storage of an extensive number of patterns p = a N ,  but the value of the critical 
storage capacity depends now on the descendant that is being retrieved 131. The 
signal-to-noise analysis tetls us that for a > ay there is no retrieval of the y-  
descendant in ( S ) ,  where a:N is given in (6) in t e r m  of the eigenvalues of the matrix 
- - A. Hence the smaller A,, the smaller the corresponding critical storage capacity ay. 

In the present paper we take a complementary approach and we analyse the space 
of interactions [4] of a neural network with a synapsis which is spatially modulated 
by the spherical condition in (9), and which has the complete ‘family’ of patterns in 
(5) as attractors of the dynamical equations. The results obtained depend strongly on 
the parameters K.,, y = 1,. . . , e ,  that characterize the basin of attraction for each 
descendant in (7). 

For the sake of clarity the calculations presented here consider the simplest case 
of just two clusters, and the basin of attraction parameters for the ‘ancestor’ and 
‘descendant’ are indicated by n,  and K , ,  respectively. When we take the limit 
n, - -CO in (23) we are relaxing the condition of having the ‘descendant’ as an 
attractor, and we study the volume of space-modulated interactions that allow only 
the ‘ancestor’ to have a finite basin of attraction. In this case we find that the critical 
storing capacity in (28) is related to Gardner’s result [4] in a way analogous to the 
signal-to-noise expression in (6). This result is general and it can be proved [ 6 ]  that 
for arbitrary number C of clusters we obtain, when K , ,  . . . , - -cc 

1 
and K’ = tc,/[(l/e)Cb Alb]T.  The result for a;(O) and e = 2 is plotted with 
a broken curve in figure 1. For A, = 0 the reference site is connected to only 
half of the sites, then the storage capacity also decreases to one half of Gardner’s 
value. When A, = A, the modulation vanishes and we recover the known result 141 

At the opposite limit we analyse the volume of space-modulated interactions that 
accept ‘ancestor’ and ‘descendant’ together as attractors of the dynamical equations. 
This case becomes particularly involved because the patterns in (5) are not statis- 
tically independent and we present in (31) and (32) the saddle-pint equations for 

a;(o) = 2. 



5918 M A  P Idiart and A Theumann 
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0' A-' I> 

Figure 1. Critical capacity a' for storing a 'family' of two patterns (full curve) and 
for storing only one pattern (broken curve) in a neural network with two clusters. as 
a function of the ratio A-' = Az / A I ,  where Ab Alb is related to the interaction 
strength between cluste~ 1 and cluster b = 1 or 2 

e = 2. The maximal storing capacity for K ,  = n2 = 0 is obtained by solving numeri- 
cally (35) and (36) .  The results shown by the full line in figure 1 indicate that a C ( 0 )  
sticks to one half of Gardner's value [4] independently of the ratio 6 = A, / A 2 .  
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